
Problem Analysis Session

SWERC Judges

SWERC 2014

SWERC Judges () Solution Outlines SWERC 2014 1 / 26

A - GREAT + SWERC = PORTO

Problem

Given a word addition problem, e.g. GREAT + SWERC = PORTO,
compute the number of solutions. i.e., how many distinct digit
assignments yield a correct sum.

Classification

Categories: Backtracking (+pruning) or Brute force enumeration

Difficulty: Easy

SWERC Judges () Solution Outlines SWERC 2014 2 / 26

A - GREAT + SWERC = PORTO

Sample Solution

Backtracking (+pruning)

The more letters and words, the easier it is to prune an exhaustive
search.
Process columns from right to left and prune bad solutions earlier. . .
(unnecessary optimization).

Brute force enumeration: generate & test

There are at most 10 distinct letters.
10! = 3 628 800 candidate solutions. We can just try them all!

SWERC Judges () Solution Outlines SWERC 2014 3 / 26

B - Flowery Trails

Problem

Given an undirected multigraph, determine the edges that are part of a
shortest path between vertices 0 (source) and P-1 (target).

Classification

Categories: Graph Theory,
Shortest Paths

Difficulty: Easy/Medium

SWERC Judges () Solution Outlines SWERC 2014 4 / 26

B - Flowery Trails

#Flowers = Twice the

length of edges that

occur in the shortest

paths from s to t

Sample Solution (O(E log N))

Adjacency list: keep at most 1 edge 〈u, v〉, #〈u, v〉, dist(u, v).

Dijkstra’s algorithm to find the shortest path from s to t and the
nodes that precede immediately each node in shortest paths.

BSF/DFS from t to s to “count” flowers. [or use Dijkstra’s algorithm twice]

SWERC Judges () Solution Outlines SWERC 2014 5 / 26

D - Book Club

Problem

Given a directed graph where each edge (A, B) means that person A likes
the book person B has, is it possible for the group of people to exchange
books, so that each one receives a book (s)he likes?

Classification

Categories: Graph Theory,
Maximum Bipartite Matching

Difficulty: Medium

SWERC Judges () Solution Outlines SWERC 2014 6 / 26

D - Book Club

Sample Solution

Bipartite graph: 〈X , Y 〉 if X likes Y ’s book.

The answer is YES iff there is a perfect matching.

Either the Hopcroft-Karp algorithm or any maximum flow algorithm
was accepted.

SWERC Judges () Solution Outlines SWERC 2014 7 / 26

E - Ricochet Robots

Problem

Given a matrix representing a floor plant marking free spaces, walls, initial
robots positions and target position, is it possible for robot 1 to reach the
target position by always moving one of the robots NSWE until hiting an
obstacle?

Classification

Categories: Search

Difficulty: Easy/Medium

SWERC Judges () Solution Outlines SWERC 2014 8 / 26

E - Ricochet Robots

Sample Solution

The floor plant is small, at most 10x10 cells.

The robots always move until hitting an obstacle. Hence the search
space is far smaller than (10× 10)N

Use Breadth First Search where the state is the robots positions

Save visited states using a hash table or a binary search tree

Finish if the given depth limit didn’t yield a solution.

Possible (unnecessary) optimization: robots 2 to 4 positions order
does not matter. We can reduce the search space by sorting their
positions before saving the state

SWERC Judges () Solution Outlines SWERC 2014 9 / 26

F - City Park

Problem

Given a list of non-overlapping rectangles, what is the area of the largest
connected surface of rectangles? Rectangles form a surface if they are
tangent.

Classification

Categories: Geometry

Difficulty: Medium

SWERC Judges () Solution Outlines SWERC 2014 10 / 26

F - City Park

Sample Solution

No overlaps ⇒ #tangencies is O(n), for n rectangles.

We must look for a O(n log n) solution. [O(n2) gives TLE].

How we discover tangencies?
Exploit a geometric property:

Sort closing V-edges and opening V-edges
by x-coordinate (and, for each x , sort by
y -coordinate). V-tangencies: a kind of
“Merge” of the two lists.
Repeat for H-edges to find H-tangencies.
Combine with Union-Find to obtain the
connected components or build the
adjacency graph and apply BFS.

Or adapt plane-sweep: a sweep V-line from left to right; suport sweepline
status of active rectangles by a binary search tree (BST).

SWERC Judges () Solution Outlines SWERC 2014 11 / 26

G - Playing with Geometry

Problem

Given two rectilinear polygons with no collinear edges, is it possible to
transform them to the same permutomino using only slides and turns?

Classification

Categories: Geometry

Difficulty: Easy

SWERC Judges () Solution Outlines SWERC 2014 12 / 26

G - Playing with Geometry

Sample Solution O(n log n) (if we “sort” edges to remove the empty grid lines)
Her teacher has explained how slides and turns act on point coordinates, but, by that
time, Alice was already thinking about an episode of “The Sympsons”. . .

Slides to remove empty lines: change vertex coordinates. 0 ≤ x , y ≤ 3000 too
small; not necessary to sort edges; use 0/1 array instead.

Rotation by 90◦ CCW: (X , Y)→
“

(
n

2
− 1)− Y , X

”
; by 180◦ CCW:

(X , Y)→
“
−X + (

n

2
− 1)), −Y + (

n

2
− 1)

”
; . . . Fix one polygon and rotate the

other. . . (optimization: check the minimum bounding box first).

SWERC Judges () Solution Outlines SWERC 2014 13 / 26

The Safe Secret

Problem

Given a sequence of k numbers and k operators (sum, subtraction,
multiplication or any of the previous three), find, for every rotation of the
sequence, the minimum and the maximum values we can obtain by
evaluating the operations in any order

Classification

Categories: Dynamic Programming

Difficulty: Medium

SWERC Judges () Solution Outlines SWERC 2014 14 / 26

I - The Safe Secret

Base Approach

Let’s first treat the problem without circularity.
It’s similar to the matrix chain multiplication problem.

The “max rules”:

max(X + Y) = max(X) + max(Y)

max(X − Y) = max(X)−min(Y)

max(X ∗ Y) = max(min(X) ∗min(Y), min(X) ∗max(Y),
max(X) ∗min(Y), max(X) ∗max(Y))

max(X ? Y) = max(max(X + Y), max(X − Y), max(X ∗ Y))

Time complexity of the dynamic programming algorithm:
O(k3), for 1 expression;
O(k4), for k expressions, treated independently (which is too high).

SWERC Judges () Solution Outlines SWERC 2014 15 / 26

I - The Safe Secret

Optimizing the base approach

The k expressions share many sub-problems (example for k = 4)

1 expression :

k(k+1)
2

sub-problems

n0 n1 n2 n3

n0n1 n1n2 n2n3

n0n1n2 n1n2n3

n0n1n2n3

k expressions :

k2

sub-problems

n0 n1 n2 n3

n0n1 n1n2 n2n3 n3n0

n0n1n2 n1n2n3 n2n3n0 n3n0n1

n0n1n2n3 n1n2n3n0 n2n3n0n1 n3n0n1n2

Time complexity of the dynamic programming algorithm:
O(k3), for k expressions.

SWERC Judges () Solution Outlines SWERC 2014 16 / 26

J - The Big Painting

Problem

Given a binary matrix and a 2d pattern, how many times does the pattern
occur in the matrix?

Classification

Categories: String Matching

Difficulty: Medium-Hard

SWERC Judges () Solution Outlines SWERC 2014 17 / 26

J - The Big Painting

Sample Solution

With N = L = C , a brute force approach takes O(N4)

Treat equal pattern lines as the same

The sample input line sequence would be 1, 2, 2, 1 because the 1st line
equals the 4th and the 2nd equals the 3rd.

For each line, find the positions where each pattern line occurs

The pattern occurs whenever there is a sequence 1, 2, 2, 1 in the
columns of the matrix on the right

SWERC Judges () Solution Outlines SWERC 2014 18 / 26

J - The Big Painting

Sample Solution

Aho-Corasick algorithm to find the positions where each pattern line
occurs in each line of text - O(N) - taking O(N2) total

Search the pattern line sequence for each of the N columns in O(N)
time using Aho-Corasick or Knuth-Morris-Pratt algorithms.
This also takes O(N2) total time

The overall time complexity of this approach is O(N2)

Extending the Rabin-Karp algorithm to 2 dimensions would also be a
valid approach

SWERC Judges () Solution Outlines SWERC 2014 19 / 26

C - Golf Bot

Problem

Given two sets of integers, Distances and Holes, how many integers from
set Holes can be formed by summing up to two (possibly the same)
integers from Distances set?

Classification

Categories: Math, Fast Fourier Transform

Difficulty: Hard

The problem seems easy until we check the constraints.

A simple approach is to hash the possible distances. Then we could
check each hole in O(N) time.

However, this would yield an O(N2) algorithm which is too slow.

SWERC Judges () Solution Outlines SWERC 2014 20 / 26

C - Golf Bot

Sample Solution

Let’s restate the problem and use binary vectors.

S[i] is 1 if golf bot can shoot distance i
H[i] is 1 if there is a hole at distance i

We want to calculate Possible[i] =
∑i

k=0 S [k] ∗ S [i − k]

The Possible vector is actually the discrete convolution of S with
itself. We can calculate it the same way we multiply polynomials
using a discrete Fast Fourier Transform (FFT).

SWERC Judges () Solution Outlines SWERC 2014 21 / 26

C - Golf Bot

Sample Solution

The discrete FFT of n values can be calculated in O(n log n)

After calculating the Possible vector, we just need to check in how
many distances i , Possible[i] > 0 and H[i] = 1

Recall that the distances are up to 200 000. Say the maximum
distance is D, then the time complexity of this approach is
O(N + M + D logD)

SWERC Judges () Solution Outlines SWERC 2014 22 / 26

H - Money Transfers

Problem

Given a weighted undirected graph and a subset M of its vertices, what is
the maximum weight we can add to each edge of the graph so that the
shortest path between X and Y passes only through vertices of M?

Classification

Categories: Graph Theory, Shortest Paths

Difficulty: Hard

SWERC Judges () Solution Outlines SWERC 2014 23 / 26

H - Money Transfers

Sample Solution

For any 2 paths with i and j edges and i < j , it’s always possible to
add a large enough cost so that wi + i ∗ C < wj + j ∗ C

SWERC Judges () Solution Outlines SWERC 2014 24 / 26

H - Money Transfers

max C : ∃s ∈ DistOurs ∀r ∈ DistTheirs ws + nsC < wr + nr C

Sample Solution

Find the shortest path from X to Y , using i edges for 1 ≤ i < N,
both using vertices in M and other vertices.

Let A be the minimum number of edges in a path using only vertices
from M and DistOurs[A] the minimum cost with A edges

Similarly, let B be the minimum number of edges in a path using
other vertices and DistTheirs[B] the minimum cost with B edges

The answer is Infinity if
A < B or (A = B and DistOurs[A] < DistTheirs[B])

SWERC Judges () Solution Outlines SWERC 2014 25 / 26

H - Money Transfers

Sample Solution

For each shortest path with i edges using vertices in M, compare it
with the paths that use other vertices

max C : ∃s ∈ DistOurs ∀r ∈ DistTheirs ws + nsC < wr + nr C

Bellman-Ford in O(P ∗ N) is simple and fast enough for the first step

We can just compare all paths with i and j edges in O(N2)

The time complexity of this approach is O(P ∗ N + N2)

Using Dijkstra’s algorithm for the first step would lead to a more
efficient algorithm. The state is a composite key
(cost, num edges, only ours?) and we can ignore irrelevant paths

SWERC Judges () Solution Outlines SWERC 2014 26 / 26

